e ——

Introduction to
Marathons

MS IS NOT
FICIENT

BECAU



What do you get in Marathons

One problem
Usually 1+ week long
Can't be solved perfectly in reasonable time limit



Examples of problems

Travelling salesman problem (TSP)
Elevator navigation system in hotel
Playing (simplified) poker vs Al



Common misconceptions

You need very good algorithmic background
You need to invest a lot of time

You need to try a lot of different approaches to each
problem



e — -
Required skills in SRMs

Short-term concetration
(being fast, avoiding
bugs)

Long-term memory
(remembering old
problems)

Lots of experience in old
contests

Short-term concetration
(being fast, avoiding
bugs)

Long-term memory

(remembering all of the
code that you wrote)

Time managament

Being open-minded



How do you solve a tough problem

10. Understand the problem
20. Solve the problem

30. Analyze the results

40. If (not dead) goto 2



How do you solve a tough problem

10. Understand the problem
20. Solve the problem

30. Analyze the results

40. If (not dead) goto 2 1



How do you solve a tough problem

10- Understand the problem
—-20- Solve the problem
36- Analyze the results

40-1f(notdead)goto21



/ e
Using Hill Climbing

Defining state
Defining transposition function

Defining evaluation function

current_state = init_state();
while (time_available > 0) {
new_state = transposition(current_state);
if (evaluate(new_state) > evaluate(current_state))
current_state = new_state;



|
Using Simulated Annealing

Defining state
Defining transposition function

Defining evaluation function

current_state = init_state();
while (time_available > 0) {
new_state = transposition(current_state);
if (P(evaluate(new_state)-evaluate(current_state)) < rand())
current_state = new_state;

10



When you should use SA?

* Always when it works!

11



Random hints

Write something that works ASAP and improve it by
small steps, or at least treat it as a benchmark

Work only when you feel you'll be productive

If you can, work on paper

Visualize what youre doing when getting lost

Try to dissect complex problem into smaller ones
Don't do tedious work, when you're feeling creative
There’s no such thing as solving the problem

Test often



/ |
Beyond Marathons

+ Data mining / Data analysis
+ Machine vision

+ Game Al

+ Low-level optimization

+ ...

= Problem solving



