
BECAUSE THE ONE TO ALGORITHMS IS NOT
SUFFICIENT

 1

What do you get in Marathons
 One problem

 Usually 1+ week long

 Can’t be solved perfectly in reasonable time limit

 2

Examples of problems
 Travelling salesman problem (TSP)

 Elevator navigation system in hotel

 Playing (simplified) poker vs AI

 3

Common misconceptions
 You need very good algorithmic background

 You need to invest a lot of time

 You need to try a lot of different approaches to each
problem

 4

Required skills in SRMs
 Short-term concetration

(being fast, avoiding
bugs)

 Long-term memory
(remembering old
problems)

 Lots of experience in old
contests

 5

 Short-term concetration
(being fast, avoiding
bugs)

 Long-term memory
(remembering all of the
code that you wrote)

 Time managament

 Being open-minded

How do you solve a tough problem
 10. Understand the problem

 20. Solve the problem

 30. Analyze the results

 40. If (not dead) goto 2

 6

How do you solve a tough problem
 10. Understand the problem

 20. Solve the problem

 30. Analyze the results

 40. If (not dead) goto 2 1

 7

How do you solve a tough problem
 10. Understand the problem

 20. Solve the problem

 30. Analyze the results

 40. If (not dead) goto 2 1

 8

Using Hill Climbing
 Defining state

 Defining transposition function

 Defining evaluation function
current_state = init_state();

while (time_available > 0) {

 new_state = transposition(current_state);

 if (evaluate(new_state) > evaluate(current_state))

 current_state = new_state;

}

 9

Using Simulated Annealing
 Defining state

 Defining transposition function

 Defining evaluation function
current_state = init_state();

while (time_available > 0) {

 new_state = transposition(current_state);

 if (P(evaluate(new_state)-evaluate(current_state)) < rand())

 current_state = new_state;

}

 10

When you should use SA?
 Always when it works!

 11

Random hints
 Write something that works ASAP and improve it by

small steps, or at least treat it as a benchmark

 Work only when you feel you’ll be productive

 If you can, work on paper

 Visualize what you’re doing when getting lost

 Try to dissect complex problem into smaller ones

 Don’t do tedious work, when you’re feeling creative

 There’s no such thing as solving the problem

 Test often

 12

Beyond Marathons
+ Data mining / Data analysis

+ Machine vision

+ Game AI

+ Low-level optimization

+ ...

= Problem solving

 13

